
SU _i lw

NASA/TP--2001-210515

Stress Formulation in

Three-Dimensional Elasticity

Surya N. Patnaik

Ohio Aerospace Institute, Brook Park, Ohio

Dale A. Hopkins

Glenn Research Center, Cleveland, Ohio

September 2001



The NASA STI Program Office... in Profile

Since its founding, NASA has been dedicated to

the advancement of aeronautics and space
science. The NASA Scientific and Technical

Information (STI) Program Office plays a key part

in helping NASA maintain this important role.

The NASA STI Program Office is operated by

Langley Research Center, the Lead Center for
NASA's scientific and technical information. The

NASA STI Program Office provides access to the

NASA STI Database, the largest collection of

aeronautical and space science STI in the world.

The Program Office is also NASA's institutional

mechanism for disseminating the results of its

research and development activities. These results

are published by NASA in the NASA STI Report

Series, which includes the following report types:

TECHNICAL PUBLICATION. Reports of

completed research or a major significant

phase of research that present the results of

NASA programs and include extensive data

or theoretical analysis. Includes compilations

of significant scientific and technical data and

information deemed to be of continuing

reference value. NASA's counterpart of peer-

reviewed formal professional papers but

has less stringent limitations on manuscript

length and extent of graphic presentations.

TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary, or

of specialized interest, e.g., quick release

reports, working papers, and bibliographies
that contain minimal annotation. Does not

contain extensive analysis.

CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored

contractors and grantees.

CONFERENCE PUBLICATION. Collected

papers from scientific and technical

conferences, symposia, seminars, or other

meetings sponsored or cosponsored by
NASA.

SPECIAL PUBLICATION. Scientific,

technical, or historical information from

NASA programs, projects, and missions,

often concerned with subjects having

substantial public interest.

TECHNICAL TRANSLATION. English-

language translations of foreign scientific

and technical material pertinent to NASA's
mission.

Specialized services that complement the STI

Program Office's diverse offerings include

creating custom thesauri, building customized

data bases, organizing and publishing research

results.., even providing videos.

For more information about the NASA STI

Program Office, see the following:

• Access the NASA STI Program Home Page

at http://www.sti.nasa.gov

• E-mail your question via the Internet to

help@sti.nasa.gov

• Fax your question to the NASA Access

Help Desk at 301-621-0134

• Telephone the NASA Access Help Desk at
301-621-0390

Write to:

NASA Access Help Desk

NASA Center for AeroSpace Information
7121 Standard Drive

Hanover, MD 21076



NASA/TP--2001-210515

Stress Formulation in

Three-Dimensional Elasticity

Surya N. Patnaik

Ohio Aerospace Institute, Brook Park, Ohio

Dale A. Hopkins

Glenn Research Center, Cleveland, Ohio

National Aeronautics and

Space Administration

Glenn Research Center

September 2001



This report is a formal draft or working

paper, intended to solicit comments and
ideas from a technical peer group.

NASA Center for Aerospace Information
7121 Standard Drive

Hanover, MD 21076

Available from

National Technical Information Service

5285 Port Royal Road

Springfield, VA 22100

Available electronically at http: / / gltrs.grc.nasa.gov/GLTRS



Stress Formulation in Three-Dimensional Elasticity

Surya N. Patnaik
Ohio Aerospace Institute
Cleveland, Ohio 44135

Dale A. Hopkins
National Aeronautics and Space Administration

Glenn Research Center
Cleveland, Ohio 44135

Summary

The theory of elasticity evolved over centuries through the contributions of eminent scientists like Cauchy, Navier, Hooke

Saint Venant. and others. It was deemed complete when Saint Venant provided the strain formulation in 1860. However, unlike
Cauchy, who addressed equilibrium in the field and on the boundary,, the strain formulation was confined only to the field.

Saint Venant overlooked the compatibility on the boundary. Because of this deficiency, a direct stress formulation could not be
developed. Stress with traditional methods must be recovered by backcalculation: differentiating either the displacement or the

stress function. We have addressed the compatibility on the boundary. Augmentation of these conditions has completed the

stress formulation in elasticity, opening up a way for a direct determination of stress without the intermediate step of
calculating the displacement or the stress function. This Completed Beitrami-Michell Formulation (CBMF) can be specialized

to derive the traditional methods, but the reverse is not possible. Elasticity solutions must be verified for the compliance of the
new equation because the boundary compatibility conditions expressed in terms of displacement are not trivially satisfied. This
paper presents the variational derivation of the stress formulation, illustrates the method, examines attributes and benefits, and
outlines the future course of research.

1.0 Introduction

The theory of elasticity evolved over centuries through the contributions of eminent scientists like Cauchy, Navier, Hooke,

Saint Venant, and others (see fig. 1 ). Saint Venant, through his strain formulation, presumed to have provided the last set of

equations in 1860. Decades earlier, Cauchy had formulated the equilibrium in the field and on the boundary of an elastic
continuum. The equilibrium and compatibility formulations were deemed complete even before the turn of the 20th century.

This presumption is in error. Saint Venant, credited for the field equations, overlooked the boundary formulation. In other
words, the theory of elasticity camouflaged a deficiency in the compatibility formulation for well over a century. This weakness
diverted the development of a direct stress determination method. The traditional methods recovered stress by backcalculations:

either by differentiating the displacement or the stress function. We have addressed the boundary compatibility condition
(BCC). Augmenting available elasticity equations with the BCC has led to the completion of the Beltrami-Michell formulation

(CBMF). This method with stress as the primary unknown can solve displacement and mixed boundary value problems in
elasticity. A direct stress determination method, like the CBMF, however was envisioned by Beltrami and Michell (ref. 1)
following the strain formulation in 1860. Michell's thought is expressed by Love tref. 2) in the following quotation:

"It is possible by taking account of these relations [the cornpatibili_' conditions] to obtain a complete system of
equations which must be satisfied by stress components, and thus the way is open for a direct determination of stress
without the intermediate steps of forming and solving differential equations to determine the components of

displacements."

Their method, or the classical Beltrami-Michell formulation, was incomplete because it did not include our boundary
conditions. It thus has limited application. The completed method, or the CBMF, is the versatile elasticity formulation. The
CBMF can be specialized to obtain Navier's displacement method and Airy's stress function formulation. The CBMF cannot

be derived from the later two methods. Elasticity solutions that have been obtained by the two traditional methods must be
verified for the compliance of the new equations because the boundary compatibility conditions expressed in terms of the

displacement functions are not trivially satisfied. This paper presents the CBMF for three-dimensional elasticity in the
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subsequent sections: completed Beltrami-Michell stress fommlation, properties of the compatibility conditions, illustrative

examples, a discussion on attributes and benefits, future course of research, and conclusions.
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Figure 1 ._The theory of structures had camouflaged a deficiency in the compatiblity formulation since 1860.
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2.0 Completed Beltrami-Michell Stress Formulation

We emphasize that the CBMF can be derived only through a variational approach. The new equations, the boundary

compatibility conditions, are not amenable to a direct derivation. The CB MF is obtained from the stationary condition of the

variational functional (ref. 3) of the Integrated Force Method (IFM). The stationary condition yields the field equations and the

boundary conditions as vcell as the displacement continuity conditions. The functional rt', has three terms---A. B, and W----as

follows:

_. = A + B-W (1)

Term A represents the internal energy expressed in terms of stress ((y) and displacement (u, i', icl as follows:

=,{o++, +, i+_+_+) [+, +.,+--+%r (2a)
_Tv +(y- +'_v=,, a,-+°' , - a= +. a:. a,- . a.: a,,) ta= <_.,-)l

Term B represents the complementary internal energy. It is expressed in strain (_) and the stress function (g>) as

B=S
V +-++- ++2+/+,-v-_j=---r_ta-7___ +_=a,--r-+,-Tj

(+,3,r- t-_ t <':<'-"J_
(2b)

The term W represents the potential of the work done due to the prescribed traction on surface P _, the prescribed

displacements on F', and the specified body forces in the volume V of the continuum csee fig. 2) as

+=j j
F s FU 'l.'

(2c)

where O,-, cry, if:, %, x+,.:,and z:, are the six stress components: G, G, E:, _,-,., y,.:, and g:, are the six strain components: u, v, and w

are the three displacement components: <Pt, q0__,and q)3 are the three stress functions: P ,, P ,., and P. are the three prescribed

tractions: P.,, p,., and P: are reactions where displacements u, v, and _rare prescribed; and B,, B,., and B: are the three body

force components.

The three stress functions are defined as

3-%
t.---

_3, 2

(3)

The stationary, condition of & with respect to the displacements and stress functions yields all the equations of the CBMF

as follows:
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_z=,.+az>+_%+ B [&,,+|a2_,, a2c:

ax Oy a: :J I _:---_-+ _':-

{_t a._2 -_[_ag:32_v . 32e- 32yx._l=._

d2er a2c.v 3 Y.vv

a,,2 + av2 ava,,
&'P3 ]dV +

_ [{av.,-_.,-+ a,,yt., 7 + av:*:,-- p-v }&, +{av,.t., _. + av.,.q v +av-ty:- _v }8,'+
s

o,, a, )t........ la:t - . _ -. . - •

{_.v( av- I+_-"_-(av-e" avv- )}avx _: --'7'- 7:._ --7-t.'= &P2- ) a:t ....

avve"-_Txv +_x av"ev---_-Txr _3 dS+

S[( u -_)8 (avx_.,. + av.,.tay + a,,:tav )+ (,'-V)g(avxt._y + av,,<_ ,. + av:ty: )+
s

(w-_:)8(av.r ta_. +avyZy: +avxO-)]dS (4)

2.1 Field Equilibrium Equations

The three equilibrium equations in the field are obtained as the coefficients of the three incremental displacement

components (&t, &', &v) in eq. (4).

ao x at_,.
+ '+ + B x = 0

ar _, O:

°atw 3_r °at_,-
i i + i + I' " } e _. = 0

3x _v 3: "

at:_ +o_,:+a__+__=o
3.r 3v 3z

The formulation of the field equilibrium equations (5) is credited to Cauchy (see fig. 1).

(5)
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2.2 Field Compatibility Conditions

The three CC in the field are obtained as the coefficients of the three incremental stress (see fig. 1) functions (8%, 8q)2,

8q_3) in eq. (4). The strain CC in the field, refen'ed to as the "strain formulation," is credited to Saint Venant. For an isotropic

material with Young's modulus E and Poisson's ratio v, the CC expressed in terms of stress are as follows:

-v_- -roy)+ o- -vov -v_r)- 2(l+x, I_ = 0
dz- Or- " "

O.v2 - . .....

a2 _( a'-_,,,7(Gv -vGy -v(_.. )+ o'r - vo'_ - vo'x )- 2 (i + v)_ = 0 (6)

The field CC given by eq. (6) can be further simplified to obtain the canonical form given in reference 4.

2.3 Boundary Equilibrium or Traction Conditions

The three equilibrium equations on the boundary are obtained as the coefficients of the variational displacements (8.. 8,,

8.) in the surface integral terms in eq. (4):

avxG.v + avy'_.vy +avzT'xz = "Px

av.r'_.vv + avvGv + av'2T'.vz = Px'

Zxzav. v + z).zavy +o3,avz = _, (7)

The traction conditions credited to Cauchy are indeterminate because six stresses are expressed in terms of three equations

2.4 Boundary. Compatibility Conditions

The BCC are obtained as the coefficients of the variational terms (8%. 8q02,8_0_) in the surface integrals in eq. (4). For an
isotropic material, the BCC when expressed in stress become

_{avz (O.v-vo.-v_ r )-avv (1 +v)'Q. }+ _7{avy (O:-v_ r -rOy )-avz (1 + v)'ty z }=0
0z " " - -" . "

-_x { ,:r(Oc-v(_.r-vc_.v)-avc(l+v) "t , + _-_-Iav -vc_z)-avx

_-_-{avv ((_,.-vo v -v(__ )-av. v (1 +v)'tn,}+ O-_v{avx (o v -V,-- vo.,. )-avv (l+ V)'t.ry } = 0
0y " ......

The three BCC given by eq. (8) had been missing since 1860. The traction condition given by equation (6) and the BCC
ensure stress determinacy on the boundary.
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2.5 Displacement Continuity Conditions

Displacement boundary conditions are obtained as the coefficients of the variational reaction terms {6 (a,,o'_ + a,., r,,. +
a,:r:,). 6la, ,r,,+ ... ), and 6 (a,,r.:, +...)} in the surface integral in eq. (4):

II =H"

(9)

The variational functional of IFM yields almost all the equations of elasticity:

( I ) The EE in the field and on the boundary: These are identical to Cauchy's equations.
(2) The CC in the field and on the boundary: The field equations are credited to Saint Venant. The BCC are the new

equations.

(3) The displacement continuity conditions: The variational method provides a difficult, but elegant, derivation of the
continuity conditions.

(4t The IFM functional can be specialized to obtain the potential and the complementary energy functionals.

CBMF is defined through the EE and the CC in the field and on the boundary of an elastic continuum, given by eqs. (5) to

(8). Stress determination by CBMF does not require the displacement boundary conditions. The displacement functions, u(x, 3',
z). vIx, y, z), and wIx. y, z), if required, can be determined by integrating the known stress. The calculation of the constants of

integration in the displacement functions requires the displacement boundary conditions given by eq. (9). CBMF can be used
for analysis of stress, displacement, and mixed boundary value problems. A correct solution must satisfy all elasticity equations

(eqs. (5_ to (9)). Solutions obtained without the use of the BCC should be verified for their compliance, especially for a
continuum with deformable boundaries. In traditional solutions to the elasticity problem, displacement continuity conditions are
augmented with the slope or derivative of displacement. The "slope" condition somewhat resembles the boundary compatibility
condition.

3.0 Properties of the Compatibility Conditions

Strain or deformation balance is the physical concept behind the controller-type compatibility conditions, In elasticity,

tbr example, the strains (e) are controlled, f (e,, e, ...... Yzx)= 0, or the deformations ([_) are balanced, f (131, __,..... 13.) = 0, in
discrete structural systems. The concept of balancing stress and force on a differential block to generate the EE cannot be
applied to generate the CC. The procedure adopted by Sokolnikoff (ref. 4)--the elimination of displacement from the strain

displacement relations to derive the field CC--cannot be extended to generate the BCC. Their generation requires the
utilization of variational calculus. The BCC derived from the stationa_ condition of the IFM variational functional can,
however, be verified through an application of the theorems of integral calculus.

3.1 Verification of the Boundary Compatibility Conditions

Green's theorem can be used to verify the BCC. This theorem in two-dimensions can be vv_tten as

_{OQ_'.', n°P) ds='f'(av'P+avvQ)d¢;-)''F "
(10)

where P and Q are differentiable functions and F represents the boundary of the domain S.

The BCC in two-dimensional elasticity can be written as

av.,. If _ey )_If Oy.,3. ]] [( _e,. ) 1 ( 0Yxv ]]

[{ av )2{
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This condition is recovered in the line integral term in eq. (10) when the field compatibility condition given by

3c._. 3cv 3T.w

av e axe axav a,-L{a,- j] )-2{T }]

is substituted in the surface integral. The reader can verify the BCC for three-dimensional elasticity by repeating the procedure.

3.2 Nontrivial Property of the Boundary Compatibility Conditions

The compatibility conditions in the field arc automatically satisfied when expressed in terms of continuous displacement

functions (u, v. w). leading to an identity like [flu, v, w) -.flu, v, w)} = 0. The boundary, compatibility conditions expressed in
terms of continuous displacements are not satisfied automatically. For three-dimensional elasticity, the three BCC written in

terms of displacement take the following forms:

_2 u 32w 32

_l = av,. _7-_+a v- O.-_,o:(avzv+av,.W) =0• 3:- " av e

32w o32u 32
9l_= av: -ff--__+avx -_ (avxW+av:u)=O

o.r- 3:- 3zax
(11)

32u 02u 32
9"13= av,.--_-f_ +avv (av,.U+av,.v)=O

" m- 3v 2 3.','03' "

For three-dimensional elasticity, the compatibility at a boundary interface, defined by, an outward nomlal (/i) with the

direction cosines a,_., an, and a,.-, shown in figure 2, will be satisfied provided the following three residues are matched at the

left and right of the boundary,.

9_ L + 9_ R= 0 9_,L + 9L R = 0 9_ L + _xg = 0 (12}

where 5R_c and _R refer to the residues for the displacement functions on the right and left of the boundary P-Q in figure 2.

The compatibility compliance imposes a restriction on the derivatives of the displacement functions.
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_bed displacement)

T Re_Iion "1 _ Region ,2__

L L L L , L L

J"o ^

Figure 2.--A composite elastic continuum.

3.3 Compliance of the Boundary Compatibility Conditions

The compliance of the BCC for membrane analysis is illustrated considering an example of a simple stiffness-method-

based finite element model with a four-node rectangular and a three-node triangular element as shown in figure 3. Along the

interface connecting nodes (2 and 4) the compatibility compliance is defined by

_i,,t_rf_ = _f_td,,_u,., + _tri_,_ul_ = 0 (13)

5 4

®

2

Figure 3.--Boundary compatibility compliance for
two-element model.

where the residue function (_) for each element defined in terms of displacements (u, v) is

r;-,,:a" ----_ _+-- [_-5 taT--"a,a,jj

Consider displacement functions for the rectangular membrane elements (ref. 5) as follows:

rectan_ular/l{ _ _,) . .- -, _ = CIX+ (.'.C(3,_+ c3y + C4

(14)

(15)
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rectangular _ .
Likewise, the _ vtx, y) displacement function can be defined. The eight constants (q, c2..... cs) can be linked to the eight

nodal displacements of the rectangular element.

Displacement function for the triangular element can be written as

triangular .
" u(.r,y) =dix + d2y + d_ (16)

Likewise the (tri"n'_uJ'v(x, 3')) displacement can be written. The six constants (dt, d2..... do can be linked to the six nodal

displacements of the triangular element.

The contribution to the residue function (_) for each of the two elements can be obtained as

N_._,_._J,,,.. l-z, = 0.5 {a,.,c6 + a,,.c,_}

¢_triangulan 1-21= 0 (17)

The boundary compliance (q_rectan_ular+_ - .0t'ri_"_°l_'._ = 0) at the interface of the finite element model shown in figure 3 is not

satisfied because N_nt_,-l_ = 0.5{a,,c6 + a,,c2} and c6 = c: _ 0. In finite element analysis, the traditional assumption that the

stiffness method satisfies the compatibility conditions a priori needs to be reviewed with respect to compliance of the boundary
compatibility conditions.

3.4 Attributes of Elasticity Operators

The equilibrium operator and the compatibility operator are related. The operation of the field equilibrium operator [£_] on
the field compatibility operator [£C] produces a null condition:

[L:E] [£c ]r : {0} (18a)

The field equilibrium equations, in operator form, can be written as

ax t":'
Br }: _B r or £_ {ff}=-{B}

(18b)

Likewise, the strain compatibility conditions in the field can be represented as

02 _2 _2 ]]E-v_v 2 _xOv _r 2 Z9

" [ EY

.={0} or £C{e}=0 (18c)
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Equation(18atcanbeverifiedby'directsubstitution.Theequilibriumandstraindisplacementoperatorsalsoarethe
transposeofeachother.

(18d)

E v

7.17

,-)
-- 0
bx

0

= 0 by

,:)v oqx

The strain displacement relation retains the genus of the equilibrium and compatibility concepts. Both the field CC and the

field EE can be derived from the strain displacement relations by eliminating the displacements and applying virtual work
principles, respectively. The null property given by equations (18a) and (18b) shows the relationships that exist between the

equilibrium, compatibility, and strain displacement concepts. The equilibrium and the compatibility concept remain the same
either in the field or on the boundary. Their equation forms differ to accommodate the field or boundary.

4.0 Illustrative Example: Composite Circular Plate Under Thermomechanical Loads

The CBMF is illustrated through the analysis of a composite plate. The moment and displacement of the problem are
functions of a single radial coordinate. This trivial problem, solved in closed form, has identical solutions via CBMF and
Navier's displacement method, because for the radial symmetric plate the boundary compatibility condition reduces to the

slope continuity condition. The problem, however, illustrates the treatment of the boundary, compatibility conditon and the
displacement boundary condition in the stress formulation.

The clamped composite circular plate is made of an aluminum inner plate lff21_and a steel outer plate (f2,j as depicted in
figure 4. The inner plate carries a uniformly distributed load of intensity q, whereas the outer sector is uniformly heated with a

temperature differential of AT. The radii of the inner a and outer b sectors are 6 and 12 in.; the thicknesses of hi and ho are 0.2
and 0.15 in.; the Young's moduli E i and Eo are 10.6 and 30.0 million psi; the Poisson's ratios vi and vo are 0.33 and 0.3; and

the load q and temperature differential AT are 100 psi and 50 °F, respectively.

The classical Beltrami-Michell Formulation cannot be used to solve the problem because the plate has clamped, or
displacement boundary conditions, at the outer edge and a mixed condition at the interface. CBMF, however, can solve

the mixed boundary value problem. CBMF considers the two moments (M,. and M 0 as the primary unknowns. The single

displacement function (w) is obtained from the moments by backcalculations. The CBMF formulation for the problem is
obtained from the stationa_' condition of the IFM variational functional. Only the final equations are given.
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(a)
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rq
.It

_0

,iii!iiiiiiiii:iiii

 !iii!iiiiii!i
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Thermally (&t)
loaded outer

plate (_o)
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iiiii:_!iiiiii;

ii!iiiiiii;

......iiiiii!iii!_
iiii!i_iii_iiii_
iiiii;iiii_iii!

(b)

Figure 4.--Composite circular plate subjected to uniform load q and

temperature differential &t. (a) Side view of plate. (b) Planform of plate.

4.1 Field Equations

In the field the problem has one equilibrium equation and one compatibility condition. The two equations ensure the

determinacy of the moment in the field. The field EE is

d 2 dMq)

dr; (rMr )-'-_r +rq=O
(19)

The field CC is

r d (M -VMr)+(l+v)(M_p-Mr)+Krat( dAt ] 0
d,._ , T_--g'r )=

(20)
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where the plate rigidity is K = Eh:/[ 12( I - v:)].

Field EE ! 19) and (20) apply to both plate segments (f2, and f2i).

4.2 Boundary Conditions

The problem has three boundary conditions, consisting of two equilibrium equations and one compatibility condition. At

the outer clamped boundal T the transverse and rotational equilibrium conditions yield two equations:

Rw = d (rM,-)-M_0 (21)

R = M r (22)

where R_, and R_, represent the transverse and moment reactions. The two boundary equilibrium conditions given by

equations (21 ) and (22) are used to back calculate the two reactions at the outer boundary but are not explicitly used to calculate
the moment functions.

The single boundary compatibility condition at the outer boundary has the following form:

i M
"--_( _-VMr)+at(A-_--_l=O (23 BC 1 )

This condition, henceforth referred to as BCj will be used to determine the moment functions in the CBMF.

At the interface, there are three boundary conditions representing the residue balance condition for equations (21) to (23),
discussed earlier. The three conditions at the interface (r = a) are

M_ =Mr II (24 BC2 )

d-ff--(rM_)-M_= d (rMHr I-M_
dr _ dr _ : ,e (25 BC 3 )

' '
K I h I K II hit

(26BC 4)

where the superscripts I and II refer to the two sectors at the interface.

The residue in the rotational and transverse equilibrium is accounted for through equations (24) and (25), respectively.
The compatibility residue balance is represented by equation (26). The temperature effect is introduced through the BCC, or

equation (26). The CBMF will use these three conditions, which will be referred to as BCb BC,_, BC_, and BC4.

The finite condition of the moment functions IM,- and M_) referred to as (BC5 and BC6) will also be used in the CBMF
analysis. The two field equations and the six boundary conditions are sufficient for the calculation of the two moment

functions. In CBMF. displacement is backcalculated from moment functions. This process requires displacement continuity
conditions (w = 0 at outer boundar 3, and at the interface: w:= w°) that are obtained from the stationary condition of the
variational functional.
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4.3.Solution

sThe field equations (eqs. (19) and (20)) are solved to obtain the following general solutions. For the inner plate.

M :( B 1 1 1 1(,-)=-7+2c, (l+,'i)lot,+ c, - (3+vi)q,2 (27a)

(27b)

Likewise, the solutions for the outer plate with no distributed load are

M° (r)=-B-_ +l c'(l+v°)l°g"+l c2(i,.-2 - - v°)+l D'2"
(28a)

M" "-_''zB"1C., (I +vo)log r- 41--C-,(l-v,,)+ l-D,(,')=-__+ .... - (28b)

The six integration constants are evaluated for the six boundary conditions for a temperature AT of 50 °F, a load q of
100 psi, and the material properties specified earlier. The moment solutions follow.

For the inner plate (0 <_r _<b)

M_ (r) = 8'4-4.05- 20.81r 2 (29a)

,_ ")M, / (r) = 844.05 - ,0.8 It- (29b)

For the outer plate (a < r <<.b ),

M_: (r)= 2046.63-(5203.06/r 2 )-1170log r

M_ (r)= 2676.63+(5203.06/r 2 )-ll701ogr

(30a)

(30b)

The moment solutions for the composite plate with the mixed boundary condition are obtained using CBMF without any

reference to displacements in the field and on the boundary. Displacements, if required, can be backcalculated from the
moments. For this problem, the displacement conditions at the outer boundary (w = 0 at r = b) and the continuity conditions at

O

the interface (w f = w ) are sufficient to calculate the displacement.

For the inner plate, the transverse displacement (0 _<r <_a) is

J

w i (r) = 3.1209-0.0356r 2 +0.1757×10 -3 r 4 (31a)

and for the outer plate (a _<r < b). it is

w ° (r) = 5.3614-0.1344r 2 -0.7296 log r + 0.04417r 2 log r (31b)

The CBMF solution procedure illustrated here can be extended to analyze displacement and mixed boundary value

problems in elasticity as well as for plate and shell problems•
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5.0 Discussions

The discnssion is given under the role of the CC, benefits from the use of the CC, and why the CC weren't formulated
earlier.

5.1 Role of the Compatibility Conditions

The role of the CC can be perceived from an examination of the stress-strain law, which is universal to all analysis

formulations. Hooke's law (see fig. 1), relates stress {c} and strain {_} through a material matrix [gB] as ({a} = [.ff)2]{e}). The

stress must satisfy the state of equilibrium, whereas the strain must satisfy the compatibility. Hooke's law, the equilibrium, and

the compatibility are sufficient for determining the stress in an elastic continuum. Conceptually, the calculation of stress can be

represented as

. Equilibrium Equations ]{Stress}-[ Mec___hanical Load
]

Compatibility _s J - [_Initial D--_r_n J (32)

Figure 5.IEquilibrium equations and compatibility

conditions in elasticity.

Displacement in explicit terms is not required for the determination of stress. The equilibrium and compatibility concepts

of elasticity are depicted in the two halves of the pie diagram in figure 5. The immaturity in the compatibility condition at the

boundary, is represented by the shaded quarter. In structural mechanics, the compatibility formulated through the concept of

redundant forces, "cutting" and "'closing" the gap, is not even parallel to the strain formulation of Saint Venant. In other words,

the pie diagram also applies to structural mechanics. The theory of elasticity has been developed utilizing the information

contained in the three-quarters of the pie diagram. The utilization of the additional quarter should improve the theory making it
more robust.

Stress can be determined bypassing the compatibility conditions, but omitting the compatibility can lead to erroneous

stress. Even a century ago, this deficiency was observed by Todhunter (ref. 6) while he was scrutinizing astronomer Royal

Airy's ( t 801-1892) attempt to analyze the stress in cantilever and simply supported beams.

"'Important Addition and Correction. The solution of the problems suggested in the last two Articles were given--

as has already been stated---on the authority of a paper by the late Astronomer Royal, published in a report of the

British Association. I now observe, however--when the printing of the articles and engraving of the Figures is already

completedIthat they cannot be accepted as true solutions, inasmuch as they do not satisfy the general equations (164)
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of § 303 [note that the equations ht question are the CC]. It is perhaps as well that they should be preserved as a

warning to the students against the insidious and comparatively rare error of choosing a solution which satisfies

completely all the boundary conditions, without satisfying the fundamental condition of strain [note that the condition

in question is the compatibility condition], and which is therefore of course not a solution at all."

A solution to a problem can be obtained utilizing a subset of elasticity equations. Such a solution was obtained by Airy. Its

inaccuracy was pointed out by Todhunter. Strictly speaking, a valid elasticity solution must satisfy the boundary compatibility
conditions. It is quite possible that many solutions obtained earlier may satisfy the new conditions without explicit imposition.

The "process of evolution" might have eliminated inaccuracy in the traditional solutions because such results have been in
existence for over a century. Despite this conciliatory concession, it is but prudent to verify the traditional solution for the

compliance of the new boundary conditions.

5.2 Benefit in Finite Element Analysis

A finite element method that parallels the completed Beltrami-Michell formulation has been developed. This is referred to

as the Integrated Force Method, or IFM. Force parameters are its primal variables (see table I). Displacements are recovered
from forces. The IFM equations lbr a finite element model with n force and m displacement unknowns are obtained by coupling

the in equilibrium equations ([B]{F} = {P}) to the r = n - ill compatibility conditions ([C]IG]{F} = {_3R}):

[c][clj {r}:
or [S]{F} : {P*} (33)

From the internal forces {F} the displacements {X} are backcalculated as

(34)

where [J] = m rows of [[S] -I }r.

TABLE I.--METHODS OF STRUCTURAL MECHANICS AND ASSOCIATED VARIATIONAL FUNCTIONALS

Method Priruary variables Variational
functional

Elasticity Structures Elasticity Structures

Method

number

I Completed Behrami-Michell
Formulation (CBMF)

2 Airy's formulation

3 Navier's formulation (NF)

4 Hybrid method (HF)

5 Total lbrmulation (TF)

Integrated Force

Method (IFqVl)

Redundant fi)rce method

Stiffness method (DM)

Reissner's method (RM)

Washizu's method (WM)

Stresses

Stress function

Displacements

Stresses and

displacements

Stresses, strains, and

displacements

Forces

Redundants

Deflections

Forces and deflections

Forces, deformations,

and deflections

IFM variational
functional

Complementary

energy

Potential energy

Reissner's

functional

Washizu's

functional

In equations (33) and (34), [B] is the m x n rectangular equilibrium matrix, [GI is the n x n flexibility matrix, [C] is the

r x n compatibility matrix, {SR} = -[C]{[3 _} is the r-component effective initial deformation vector, { 1_} is the initial

deformation vector of dimension n, [S] is the IFM governing matrix, and [J] is the m x n delbrmation coefficient matrix.
A research-level finite element code, referred to as IFM/Analyzers, has been developed. Results for a few examples

obtained using the IFM/Analyzers code and a commercial stiffness method code are depicted in figure 6. The three IFM
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elements used are QUAD0405, which is a four-node membrane element with five force unknowns: HEX2090, which is a

20-node brick element with 90 force unknowns: and PLB0409, which is a four-node plate bending element with nine nnknown
forces. These are very simple elements that use standard interpolation functions. The elemental generation used numerical

integration but did not use reduced integration or bubble function techniques.
Displacement and moment solutions for a flat plate under a concentrated load is given as figure 6(a_. A displacement

solution to a cantilever beana using membrane elements is shown in figure 6(b). A stress solution to a cantilever beam modeled
with brick elements is shown in figure 6(c). The frequency analysis of a turboprop blade using a brick element is shown in

figure 6(d) reported under problem 5. The test results and stiffness method predictions are shown in figure 61e) for a beryllium
cylinder. For the examples the integrated force method outperforn_ed the stiffness method, overshadowing the simplicity at its

element level. The developer of the commercial code disputed the IFM results (ref. 7). To resolve the dispute, the examples
were solved again and a detailed report with several tables was prepared. No numerical error could be detected in any of the

example problems. Only one typographical error was found--in the element subtitle. The correct word is "Six/HX20_90,'" not
"Three/HX08_90'" as published in the journal iref. 71. The information submitted to the journal and published in the NASA

Technical Memorandum (ref. 8) was correct. The typographical error in the publication is inconsequential to the conclusion.

5.3 Why Weren't the Compatibility Conditions Developed Earlier?

Three reasons for the tardy development of the compatibility might be complexity, complacency, and emphasis on
solutions. Compatibility conditions in relative terms can be considered to be more complex than other elasticity relations

because their formulation requires the variational concept of calculus. If compatibility were simpler, then its derivation would
have matured earlier. However, the converse would not be a certainty. In figure 1, we have depicted a partial list of pioneer

scientists who contributed to the development of the subject. Complexity cannot be considered to be an insurmountable
obstacle with Cauchy, Saint-Venant, Bernoulli, or Maxwell, to mention just a few. Complexity is not the likely reason.

An argument in favor of complacency cannot be justified. Since eminent scientists developed the basic principles of this
science, they could not have overlooked the fundamental compatibility concept. In the theory of structure, consider the

displacement and classical force methods. Displacement {X} is the unknown in the displacement method [K] {X} = {P}.

However, the redundant { R}, not the internal force {F}, is the unknown in the classical force method, [H]{ _} = { 7"}.

Since displacement is the unknown of the displacement method, force should have been the unknown of the force method.
In elasticity, Navier's displacement method can soh,e all three types of boundary value problems. The classical
Beitrami-Michell's stress formulation cannot be used to solve the displacement or mixed boundary, value problems. Even

novice researchers would surely have noticed and questioned the lack of uniformity between the force and displacement
methods.

Even an approximate solution can fulfill the need of an industry, which may have little interest in the particular method
used. The building and bridge industries required analysis of indeterminate trusses, continuous beams, frames, and other

structures. Redundant analysis solved such problems manually. For skeletal frames, the method of moment distributions and

Kani's method of stiffness balance were very popular prior to computer automation. Elasticity results, obtained through
superposition techniques have served the industry well. The results required by civil, mechanical, and aerospace industries were
given primary importance, but the analysis methods used were considered but secondary. The point is that the solutions of

engineering problems not only became central to the work but occupied most of the available time of competent researchers,
leaving little or no time for them to ponder or address the deficiencies or completion of the theory of compatibility. The
engineering problem-solving aspect of structural mechanics was considered to be most important. Such jobs were considered to

be glamorous and paid high dividends. But the basic science of structural mechanics, including the completion of the theory of
compatibility, appears to have been neglected by industry, research institutions, and academia alike.

Glamour and the many other dividends associated with solving difficult industrial problems are, in our opinion, the

primary reasons behind the slow progress of the theory of compatibility. Complexity and complacency may be considered but

secondary reasons for neglecting such conditions.
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6.0 Future Research

The method of force or the completed Beltrami Michell's formulation and the method of displacement or Navier's method

are the two prima D, formulation of elasticity. Other methods are listed in table 1. The boundary compatibility allows facile

movement between the five methods given in table 1: I I t CBMF, (2/Airy's stress function method, (3) Navier's displacement
method, (4) Reissner's method, and (5) Washizu's formulation. It is prudent to obtain solutions to elasticity problems by both
force and displacement methods and to eliminate error by comparison. Research thus far emphasized Navier's displacing

method, which might have entered the plateau of diminishing marginal return, The force method has opened up, and
researchers should exploit its potential. We propose initial research under two subtopics: completeness of the theory and
verification of available solutions.

6.1 Completeness of the Theory

We must complete the theory of linear and nonlinear elasticity. We have addressed the theoD, of linear elasticity. The IFM
variational functional has been fornmlated lref. 3 and 9), and the BCC have been generated for two- and three-dimensional

elasticity problems in Cartesian coordinates. The BCC were also derived for two-dimensional problems in polar coordinates,

which has yet to be published. The BCC have been generated for a rectangular plate flexure problem Iref. 101, a circular plate,
and a radially symmetrical cylindrical shell Iref. 9). Solutions to plate and cylindrical shell problems have been obtained for
mechanical load and temperature distribution. CBMF has been extended to vibration and buckling problems utilizing the

concept of "'stress mode shapes" (ref. I I ). In addition, the noncompliance of the CC at the boundary, has been shown for a
simple elasticity problem (ref. 11 ). CBMF needs to be developed in cur_'ilinear coordinates for three-dimensional elasticity.

The procedure should be extended to plates and shells. Since there are many different geometrical shell configurations dike
cylinder, spherical, conical, and paraboloidal shapes), the feasibility of training the IFM variational functional through a
computer program using symbolic language should be explored. The linear CBMF analysis should be extended next to finite

deformation elasticity theory in Lagrangian and Eulerian coordinates. The steps followed for linear elasticity can be adopted

for nonlinear problems: an extension of the variational functional including stress functions, variational operations, recovering
equations, and their interpretation and attributes. Prior to three-dimensional nonlinear analysis, the basic steps can be exercised
for a two-dimensional model.

6.2 Verification of Available Solutions

Solutions are available to many elasticity problems.. We must verify these solutions for the compliance of the BCC. This

exercise might be trivial for some problems, but new solutions might be required for others. This exercise cannot be avoided
because classical solutions are still in use to verify numerical solutions to engineering problems. For three-dimensional

elasticity, the compatibility conditions on a boundary surface will be satisfied provided the following curvature terms vanish:

o_2u b2 u c32u c92u
-- -- --0

oN," a: 2 aza.v b.r_,

a2v a2v a2v a2v
.... 0

av 2 3:2 _3: axay

a2w a2., a2w a2w

a.v2 by 2 aya= 3:bx

(35)

The boundary compatibility conditions can be factorized to obtain:
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avv -- -a V_ -- 0

/avx O.'-T-av'" OZ c)x

Boundary compatibility compliance requires equality of the following rotation terms:

(36)

Ow by Ow 3u Ov 0u
..... (37_

Ov Oz Ox O= 3x 3v

The displacement w with respect to y (or in the v-displacement direction), must be equal to the derivative of the

displacement v with the respect to = tor w-displacement direction), and so forth.

7.0 Conclusions

A deficiency in the theory of elasticity has been eliminated through the formulation of the compatibility conditions on
the boundary of an elastic continuum. These equations have completed the stress formulation in elasticity--a task that was

originally attempted by Beltrami and Michell at the end of the 19th century. This primal method of stress can handle all
three classes of boundary value problems for static, thermal, and dynamic loads. Elasticity solutions generated by Navier's

displacement method and Airy's stress function formulation should be verified for the compliance of the novel compatibility
conditions because these equations expressed in displacements do not become trivial functions like the field compatibility

conditions. Structural analyses and design can benefit from the use of the stress formulation. The compability conditions remain
to be formulated in nonlinear elasticity.

References

1. Michell, J.H.: On the direct determination of stress in an elastic solid, with application to the theo_, of plates. London Mathematical Soc., Proceedings 31

(April 13, 1899)686.

2. Love, A.E.H.: In: A Treatise on the Mathematical Theory of Elasticity. 4th edition, p. 17_ paragraph. New York: Dover Publications 1944.

3. Patnaik. S.N.: The variational energy formulation for the integrated force method. AIAA J. 2 (Jan. 24, 19861 29-137.

4. Sokolnikoff, 1.S.: In: Mathematical Theory of Elasticity, 2nd Edition, New York: McGraw-Hill 1956.

5. Przemieniecki, 1.S.: In: Theory of Matrix Stractural Analysis, New York: McCrraw-tlill 1968.

6. Todhunter. I.: In: Pearson. K. ted. I A History of the Theory of Elasticity, and of the Strength of Materials, From Galilei to the Present Time., ed.

Cambridge: University Press 1886-93.

7. Pamaik. S.N.: Coroneos, R.M.: and Hopkins. D.S.: Dynamic animation of stress modes via the Integrated Force Method. Int. J. Numer. Meth. 39 (1996_
1761-1774.

8. Pamaik, S.N.: Coroneos. R.M.: and Hopkins, D.A.: Dynamic analysis with stress mode animation by the integrated force method. NASA TM-4729,

1997. CAvailable online: http://gltrs.grc.nasa.gov/GLTRS/)

9. Patnaik, S.N.; Kaljevic, I.: Hopkins, D.A.: and Saigal, S.: Completed Beltrami-Michell Formulation for analyzing mixed boundary value problems in

elasticity. AIAA J. 34 tNASA TM-106809) (1996) 143-148.

10. Pamalk, S.N.; and Satish, H.G.: Analysis of continuum using boundary compatibility conditions of Integrated Force Method. Comput. Struct. 34 ( 19901
287-295.

11. Patnaik, S.N.: and Yadagiri, S.: Frequency analysis of structures by the Integrated Force Method. J. Sound Vibr. 83 _1982) 93-109.

NASA/TP--2001-210515 19



REPORT DOCUMENTATION PAGE i Form ApprovedOMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,

gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this

collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson

Davis Highway. Sufle 1204. Arlington, VA 22202-4302. and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188L Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATESeptember 2001
4. TITLE AND SUBTITLE

Stress Formulation in Three-Dimensional Elasticity

6. AUTHOR(S)

Surya N. Patnaik and Dale A. Hopkins

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

John H. Glenn Research Center at Lewis Field

Cleveland, Ohio 44135- 3191

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Washington, DC 20546-0001

3. REPORT TYPE AND DATES COVEREDTechnical Paper
5. FUNDING NUMBERS

V_qJ-505-63-5B-00

8. PERFORMING ORGANIZATION
REPORT NUMBER

E-10106-1

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA TP--2001-210515

11. SUPPLEMENTARY NOTES

Surya N. Patnaik, Ohio Aerospace Institute, 22800 Cedar Point Road, Brook Park, Ohio 44142; and Dale A. Hopkins,
NASA Glenn Research Center. Responsible person, Dale A. Hopkins, organization code 5930, 216-433-3260.

12a.
DISTRIBUTION/AVAILABILITY STATEMENT 112b.

rUnclassified - Unlimited

Subject Category: 39 Distribution: Standard

Available electronically at htto://ghrs.m'c.nasa._,ov/GLTRS

This publication is available from the NASA Center for AeroSpace Information, 301--621-0390.

13. ABSTRACT (Maximum 200 words)

DISTRIBUTION CODE

The theory of elasticity evolved over centuries through the contributions of eminent scientists like Cauchy, Navier,
Hooke Saint Venant, and others. It was deemed complete when Saint Venant provided the strain formulation in 1860.

However, unlike Cauchy, who addressed equilibrium in the field and on the boundary, the strain formulation was

confined only to the field. Saint Venant overlooked the compatibility on the boundary. Because of this deficiency, a direct

stress formulation could not be developed. Stress with traditional methods must be recovered by backcalculation:

differentiating either the displacement or the stress function, We have addressed the compatibility on the boundary.

Augmentation of these conditions has completed the stress formulation in elasticity, opening up a way for a direct
determination of stress without the intermediate step of calculating the displacement or the stress function. This Com-

pleted Beltrami-Michell Formulation (CBMF) can be specialized to derive the traditional methods, but the reverse is not

possible. Elasticity solutions must be verified for the compliance of the new equation because the boundary compatibility
conditions expressed in terms of displacement are not trivially satisfied. This paper presents the variational derivation of
the stress formulation, illustrates the method, examines attributes and benefits, and outlines the future course of research.

14. SUBJECT TERMS

Boundary. compatibility; Variational functional; Beltrami-Michell;
Integrated Force Method

17. SECURITYoFREPORTunclassifiedCLASSIFICATION118. 119.

NSN 7540-01-280-5500

SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

25
16. PRICE CODE

20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102






